Colloidal Cu2ZnSnS4-based and Ag-doped Nanocrystals: Synthesis and Raman Spectroscopy Study

Authors

  • V. Dzhagan V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine
  • O. Kapush V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine
  • S. Budzulyak V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine
  • N. Mazur V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine
  • E. Gavryliuk V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine
  • A. Litvinchuk University of Houston
  • S. Kondratenko Taras Shevchenko National University of Kyiv
  • V. Yukhymchuk V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine
  • M. Valakh V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine

DOI:

https://doi.org/10.15330/pcss.22.2.260-268

Keywords:

CZTS, nanocrystals, colloidal solution, Raman spectroscopy, phonons, DFT, solar cells

Abstract

Cu2ZnSnS4 (CZTS) is one of the promising materials for absorber layers of new-generation thin film solar cells. Various synthetic routes of materials preparation and structural characterization have been explored so far. Further tuning of the CZTS properties is realized via partial substitution of the cations. Here we have used an affordable and scalable method of synthesizing colloidal CZTS nanocrystals (NC) in an aqueous solution. Variation of the synthesis parameters, in particular pH of the solution, was employed to improve the crystallinity of the NCs. Furthermore, CZTS NCs with partial substitution of Cu for Ag were also successfully synthesized. Raman spectroscopy was employed as a prime tool of structural characterization of the NCs obtained, along with optical absorption spectroscopy and ab initio DFT lattice dynamics calculations. An experimentally observed slight upward shift of the main phonon Raman peak upon increase of the Ag content in (AgxCu1-x)2ZnSnS4 NCs is in agreement with the trend predicted by DFT calculation. No pure Ag2ZnSnS4 NCs could be formed, indicating a critical role of Cu in forming the kesterite structure NCs under given synthesis conditions in an aqueous medium.

Author Biographies

A. Litvinchuk, University of Houston

Texas Center for Superconductivity and Department of Physics

S. Kondratenko, Taras Shevchenko National University of Kyiv

Physics Department

References

B. Zhang, J. Sun, U. Salahuddin, P. Gao, Nano Futur. 4, 012002 (2020).

O. Stroyuk, Springer, Cham, 2018 https://doi.org/10.1007/978-3-319-68879-4.

A.I. Kachmar, V.M. Boichuk, I.M. Budzulyak, O. Volodymyr, B.I. Rachiy, R.P. Lisovskiy, et al., Fullerenes, Nanotub. Carbon Nanostructures 27, 669 (2019) https://doi.org/10.1080/1536383X.2019.1618840.

H. Zhou, W. Hsu, H. Duan, B. Bob, W. Yang, Energy Environ. Sci. 6, 2822 (2013) https://doi.org/10.1039/c3ee41627e.

V.A. Akhavan, B.W. Goodfellow, M.G. Panthani, C. Steinhagen, T.B. Harvey, C.J. Stolle, et al., J. Solid State Chem. 189, 2 (2012) https://doi.org/10.1016/j.jssc.2011.11.002.

S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo-roca, A. Pérez-rodríguez, E. Saucedo, Adv. Mater. 1806692 (2019) https://doi.org/10.1002/adma.201806692.

Y.E. Romanyuk, S.G. Haass, S. Giraldo, M. Placidi, D. Tiwari, D.J. Fermin, et al., J. Phys. Energy 1, 044004 (2019) https://doi.org/10.1088/2515-7655/ab23bc.

X. Yu, S. Cheng, Q. Yan, J. Yu, W. Qiu, Z. Zhou, et al., RSC Adv. 8, 27686 (2018) https://doi.org/10.1039/C8RA04958K.

X. Liang, P. Wang, B. Huang, Q. Zhang, Z. Wang, Y. Liu, et al., ChemPhotoChem. 811 (2018) https://doi.org/10.1002/cptc.201800109.

I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Chem. Mater. 22, 1402 (2010) https://doi.org/10.1021/cm9022024.

N. Liu, F. Xu, Y. Zhu, Y. Hu, G. Liu, L. Wu, et al., J. Mater. Sci Mater. Electron. 31, 5760 (2020) https://doi.org/10.1007/s10854-020-03146-8.

A. Saha, A. Figueroba, G. Konstantatos, Chem. Mater. 32, 2148 (2020) https://doi.org/10.1021/acs.chemmater.9b05370.

O. Stroyuk, A. Raevskaya, N. Gaponik, Chem. Soc. Rev. 47, 5354 (2018) https://doi.org/10.1039/c8cs00029h.

M. Dimitrievska, A. Fairbrother, X. Fontané, T. Jawhari, V. Izquierdo-Roca, E. Saucedo, et al., Appl. Phys. Lett. 104, 021901 (2014) https://doi.org/10.1063/1.4861593.

Y. Havryliuk, M.Y. Valakh, V. Dzhagan, O. Greshchuk, V. Yukhymchuk, A. Raevskaya, et al., RSC Adv. 8, 30736 (2018) https://doi.org/10.1039/C8RA05390A.

M. Guc, A.P. Litvinchuk, S. Levcenko, M.Y. Valakh, I. V. Bodnar, V.M. Dzhagan, et al., RSC Adv. 6, 13278 (2016) https://doi.org/10.1039/C5RA26844C.

J.F.L. Lox, Z. Dang, V.M. Dzhagan, D. Spittel, B. Martín-García, I. Moreels, et al., Chem. Mater. 30, 2607 (2018) https://doi.org/10.1021/acs.chemmater.7b05187.

J. Li, B. Kempken, V. Dzhagan, D.R.T. Zahn, J. Grzelak, S. Mackowski, et al., CrystEngComm. 17, 5634 (2015) https://doi.org/10.1039/C5CE00380F.

V.V Brus, I.S. Babichuk, I.G. Orletskyi, P.D. Maryanchuk, V.O. Yukhymchuk, V.M. Dzhagan, et al., Appl. Opt. 55, B158 (2016) https://doi.org/10.1364/AO.55.00B158.

G. Gurieva, D.M. Többens, M.Y. Valakh, S. Schorr, J. Phys. Chem. Solids. 99, 100 (2016) https://doi.org/10.1016/j.jpcs.2016.08.017.

V. Dzhagan, B. Kempken, M. Valakh, J. Parisi, J. Kolny-Olesiak, D.R.T. Zahn, Appl. Surf. Sci. 395, 24 (2017) https://doi.org/10.1016/j.apsusc.2016.08.063.

V.M. Dzhagan, Y.M. Azhniuk, A.G. Milekhin, D.R.T. Zahn, J. Phys. D Appl. Phys. 51, 503001 (2018) https://doi.org/10.1088/1361-6463/aada5c.

V.V. Strelchuk, S.I. Budzulyak, I.M. Budzulyak, R.V. Ilnytsyy, V.O. Kotsyubynskyy, M.Ya. Segin, L.S.Yablon, Semicond. Physics, Quantum Electron. Optoelectron. 13, 309 (2010) https://doi.org/10.15407/spqeo13.03.

O. Selyshchev, Y. Havryliuk, M.Y. Valakh, V.O. Yukhymchuk, O. Raievska, O.L. Stroyuk, et al., ACS Appl. Nano Mater. 3, 5706 (2020) https://doi.org/10.1021/acsanm.0c00910.

K. Cheng, S. Hong, ACS Appl. Mater. Interfaces. 10, 22130 (2018) https://doi.org/10.1021/acsami.8b04849.

K. Pietak, C. Jastrzebski, K. Zberecki, D.J. Jastrzebski, W. Paszkowicz, S. Podsiadlo, J. Solid State Chem. 290, 121467 (2020) https://doi.org/10.1016/j.jssc.2020.121467.

A. Nagaoka, K. Yoshino, K. Kakimoto, K. Nishioka, J. Cryst. Growth. 555, 125967 (2021) https://doi.org/10.1016/j.jcrysgro.2020.125967.

J. Kumar, S. Ingole, J. Alloy. Compd. 865, 158113 (2021) https://doi.org/10.1016/j.jallcom.2020.158113.

L. Qiu, J. Xu, Nanomaterials 9, 1520 (2019) https://doi.org/10.3390/nano9111520.

V.A. Online, K. Timmo, M. Altosaar, M. Pilvet, V. Mikli, M. Grossberg, et al., J. Mater. Chem. A. 7, 24281 (2019) https://doi.org/10.1039/c9ta07768e.

X. Chen, J. Wang, W. Zhou, Z. Chang, D. Kou, Z. Zhou, et al., Mater. Lett. 181, 317 (2016) https://doi.org/10.1016/j.matlet.2016.06.037.

X. Hu, S. Pritchett-Montavon, C. Handwerker, R. Agrawal, J. Mater. Res. 4, 3810 (2019) https://doi.org/10.1557/jmr.2019.328.

O. Stroyuk, A. Raevskaya, O. Selyshchev, V. Dzhagan, N. Gaponik, D.R.T. Zahn, et al., Sci. Rep. 8, 13677 (2018) https://doi.org/10.1038/s41598-018-32004-1.

O.A. Kapush, L.I. Trishchuk, V.N. Tomashik, Z.F. Tomashik, S.D. Boruk, J. Inorg. Chem. 58, 1166 (2013) https://doi.org/10.1134/S0036023613100124.

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) https://doi.org/10.1103/PhysRevLett.77.3865.

S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K.Z. Refson, et al., Z. Krist. 220, 567 (2005) https://doi.org/10.1524/zkri.220.5.567.65075.

H.J. Monkhorst, J.D. Pack, Phys. Rev. B. 13, 5188 (1976) https://doi.org/10.1103/PhysRevB.13.5188.

A.P. Litvinchuk, V.M. Dzhagan, V.O. Yukhymchuk, M.Y. Valakh, I.S. Babichuk, O. V. Parasyuk, et al., Phys. Rev. B. 90, 165201 (2014) https://doi.org/10.1103/PhysRevB.90.165201.

M. Dimitrievska, F. Boero, A.P. Litvinchuk, S. Delsante, G. Borzone, A. Perez-Rodriguez, et al., Inorg. Chem. 56, 3467 (2017) https://doi.org/10.1021/acs.inorgchem.6b03008.

R. Caballero, E. Garcia-Llamas, J.M.M. Merino, M. León, I. Babichuk, V. Dzhagan, et al., Acta Mater. 65 412 (2013) https://doi.org/10.1016/j.actamat.2013.11.010.

M. Guc, S. Schorr, G. Gurieva, M. Guc, M. Dimitrievska, J. Phys. Energy. 2, 012002 (2020) https://doi.org/10.1088/2515-7655/ab4a25.

G. Gurieva, D.M.M. Többens, M.Y.Y. Valakh, S. Schorr, J. Phys. Chem. Solids. 99, 100 (2016) https://doi.org/10.1016/j.jpcs.2016.08.017.

C. Rein, S. Engberg, J.W. Andreasen, J. Alloys Compd. 787, 63 (2019) https://doi.org/10.1016/j.jallcom.2019.02.014.

A. Khare, A.W. Wills, L.M. Ammerman, D.J. Norris, E.S. Aydil, Chem. Commun. 47, 11721 (2011) https://doi.org/10.1039/c1cc14687d.

W.C. Liu, B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak, K.H. Wong, J. Mater. Chem. A. 1, 3182 (2013) https://doi.org/10.1039/c3ta00357d.

X. Wang, Z. Sun, C. Shao, D.M. Boye, J. Zhao, Nanotechnology 22, 245605 (2011) https://doi.org/10.1088/0957-4484/22/24/245605.

B. Flynn, W. Wang, C.H. Chang, G.S. Herman, Phys. Stat. Sol. 209, 2186 (2012) https://doi.org/10.1002/pssa.201127734.

S.P. Kandare, S.S. Dahiwale, S.D. Dhole, M.N. Rao, R. Rao, Mater. Sci. Semicond. Process. 102, 104594 (2019) https://doi.org/10.1016/j.mssp.2019.104594.

M.Y. Valakh, V.M. Dzhagan, I.S. Babichuk, X. Fontane, A. Perez-Rodriquez, S. Schorr, JETP Lett. 98, 255 (2013) https://doi.org/10.1134/S0021364013180136.

Y. Zhao, X. Han, B. Xu, W. Li, J. Li, J. Li, et al., IEEE J. Photovoltaics 7, 874 (2017) https://doi.org/10.1109/JPHOTOV.2017.2675993.

Y. Jiang, B. Yao, Y. Li, Z. Ding, H. Luan, J. Jia, et al., Mater. Sci. Semicond. Process. 81, 54 (2018) https://doi.org/10.1016/j.mssp.2018.03.014.

W. Gong, T. Tabata, K. Takei, M. Morihama, T. Maeda, T. Wada, Phys. Stat. Sol. 12, 700 (2015) https://doi.org/10.1002/pssc.201400343.

A. Ibrahim, A. Guchhait, S. Hadke, H.L. Seng, L.H. Wong, ACS Appl. Energy Mater. 3, 10402 (2020) https://doi.org/10.1021/acsaem.0c01165.

Downloads

Published

2021-05-08

How to Cite

Dzhagan, V., Kapush, O., Budzulyak, S., Mazur, N., Gavryliuk, E., Litvinchuk, A., … Valakh, M. (2021). Colloidal Cu2ZnSnS4-based and Ag-doped Nanocrystals: Synthesis and Raman Spectroscopy Study. Physics and Chemistry of Solid State, 22(2), 260–268. https://doi.org/10.15330/pcss.22.2.260-268

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)