Zn-doped CoFe2O4Nanoparticles Synthesized Using Ginkgo Biloba Extract: Cation Distribution, Mossbauer Studies and Application for Water Treatment
DOI:
https://doi.org/10.15330/pcss.22.4.792-803Keywords:
cobalt ferrite, spinel, green synthesis, adsorption, dyeAbstract
The cobalt-zinc ferrites Zn1-xCoxFe2O4 (where x=0; 0.2; 0.4; 0.6; 0.8; 1.0) were obtained by green synthesis using Ginkgo Biloba extract as reductant and fuel. The cation distribution of the spinel ferrites has been investigated by means of X-ray diffraction and Mossbauer spectroscopy. The surface morphology and elemental composition were analyzed by SEM and EDS. The crystallite size decrease with increasing Co2+ content calculated from Scherrer equation and Williamson-Hall method. Adsorption properties of the spinel system were investigated using Congo Red (CR) dye as model pollutant. It is concluded that the adsorption of Congo red dye molecules can occur due to electrostatic and donor-acceptor interactions with the adsorbent surface containing various amount of active centers.
References
F. Buazar, M.H. Baghlani-Nejazd, M. Badri, M. Kashisaz, A. Khaledi-Nasab, F. Kroushawi, Facile one-pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity, Starch/Staerke. 68, 796–804 (2016); https://doi.org/10.1002/star.201500347.
K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, R.J. Ramalingam, H.A. Al-Lohedan, Comparative investigation on the structural, morphological, optical, and magnetic properties of CoFe2O4 nanoparticles, Ceram. Int. 43, 7682–7689 (2017); https://doi.org/10.1016/j.ceramint.2017.03.069.
N. Ghazi, H. Mahmoudi Chenari, F.E. Ghodsi, Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers, J. Magn. Magn. Mater. (2018); https://doi.org/10.1016/j.jmmm.2018.07.084.
M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, J. Hazard. Mater. 181, 1039–1050 (2010); https://doi.org/10.1016/j.jhazmat.2010.05.119.
J. Gilabert, M.D. Palacios, V. Sanz, S. Mestre, Fuel effect on solution combustion synthesis of Co(Cr,Al)2O4 pigments, Bol. La Soc. Esp. Ceram. y Vidr. 56, 215–225 (2017); https://doi.org/10.1016/j.bsecv.2017.03.003.
B.I. Kharisov, H.V.R. Dias, O. V. Kharissova, Mini-review: Ferrite nanoparticles in the catalysis, Arab. J. Chem. (2019); https://doi.org/10.1016/j.arabjc.2014.10.049.
C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, J. Chen, Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis, Nat. Commun. 6, 1–8 (2015); https://doi.org/10.1038/ncomms8345.
H. Liu, A. Li, X. Ding, F. Yang, K. Sun, Magnetic induction heating properties of Mg1-xZnxFe2O4 ferrites synthesized by co-precipitation method, Solid State Sci. 93 (2019); https://doi.org/10.1016/j.solidstatesciences.2019.05.005.
K. Hedayati, S. Azarakhsh, D. Ghanbari, Synthesis and magnetic investigation of cobalt ferrite nanoparticles prepared via a simple chemical precipitation method, J. Nanostruct. 6, 127–131 (2016); https://doi.org/10.7508/jns.2016.02.004.
T. Tatarchuk, N. Paliychuk, R.B. Bitra, A. Shyichuk, M.U. Naushad, I. Mironyuk, D. Ziółkowska, Adsorptive removal of toxic methylene blue and acid orange 7 dyes from aqueous medium using cobalt-zinc ferrite nanoadsorbents, Desalin. Water Treat. (2019); https://doi.org/10.5004/dwt.2019.23751.
Z. Chen, E. Shi, W. Li, Y. Zheng, W. Zhong, Hydrothermal synthesis and optical property of nano-sized CoAl2O4 pigment, Mater. Lett. 55, 281–284 (2002); https://doi.org/10.1016/S0167-577X(02)00378-6.
R. Naghikhani, G. Nabiyouni, D. Ghanbari, Simple and green synthesis of CuFe2O4–CuO nanocomposite using some natural extracts: photo-degradation and magnetic study of nanoparticles, J. Mater. Sci. Mater. Electron. 29, 4689–4703 (2018); https://doi.org/10.1007/s10854-017-8421-1.
B.G. Toksha, S.E. Shirsath, S.M. Patange, K.M. Jadhav, Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method, Solid State Commun. 147, 479–483 (2008); https://doi.org/10.1016/j.ssc.2008.06.040.
Q. Tang, H. Zhu, C. Chen, Y. Wang, Z. Zhu, J. Wu, W. Shih, Preparation and characterization of nanoscale cobalt blue pigment for ceramic inkjet printing by sol-gel self-propagating combustion, Mater. Res. 20, 1340–1344 (2017); https://doi.org/10.1590/1980-5373-MR-2017-0322.
J.R.C. Proveti, P.S.S. Porto, E.P. Muniz, R.D. Pereira, D.R. Araujo, M.B. Silveira, Sol–gel proteic method using orange albedo pectin for obtaining cobalt ferrite particles, J. Sol-Gel Sci. Technol. 75, 31–37 (2015); https://doi.org/10.1007/s10971-015-3671-y.
P.Y. Reyes-Rodríguez, D.A. Cortés-Hernández, J.C. Escobedo-Bocardo, J.M. Almanza-Robles, H.J. Sánchez-Fuentes, A. Jasso-Terán, L.E. De León-Prado, J. Méndez-Nonell, G.F. Hurtado-López, Structural and magnetic properties of Mg-Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method, J. Magn. Magn. Mater. 427 (2017); https://doi.org/10.1016/j.jmmm.2016.10.078.
M.C.G. Merino, A.L. Estrella, M.E. Rodriguez, L. Acuña, M.S. Lassa, G.E. Lascalea, P. Vázquez, Combustion Syntheses of CoAl2O4 Powders Using Different Fuels, Procedia Mater. Sci. 8, 519–525 (2015); https://doi.org/10.1016/j.mspro.2015.04.104.
P. Vlazan, M. Stoia, Structural and magnetic properties of CoFe2O4 nanopowders, prepared using a modified Pechini method, Ceram. Int. 44, 530–536 (2018); https://doi.org/10.1016/j.ceramint.2017.09.207.
V.C. Karade, T.D. Dongale, S.C. Sahoo, P. Kollu, A.D. Chougale, P.S. Patil, P.B. Patil, Effect of reaction time on structural and magnetic properties of green-synthesized magnetic nanoparticles, J. Phys. Chem. Solids. 120, 161–166 (2018); https://doi.org/10.1016/j.jpcs.2018.04.040.
H. Hwang, H. Shin, W.J. Lee, Effects of calcination temperature for rate capability of triple-shelled ZnFe2O4 hollow microspheres for lithium ion battery anodes, Sci. Rep. 7, 1–10 (2017) ;https://doi.org/10.1038/srep46378.
I.M. Chung, I. Park, K. Seung-Hyun, M. Thiruvengadam, G. Rajakumar, Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications, Nanoscale Res. Lett. 11, 1–14 (2016); https://doi.org/10.1186/s11671-016-1257-4.
S. Gómez-Graña, M. Perez-Ameneiro, X. Vecino, I. Pastoriza-Santos, J. Perez-Juste, J.M. Cruz, A.B. Moldes, Biogenic synthesis of metal nanoparticles using a biosurfactant extracted from corn and their antimicrobial properties, Nanomaterials. 7 (2017); https://doi.org/10.3390/nano7060139.
M. Liaskovska, T. Tatarchuk, M. Bououdina, I. Mironyuk, Green Synthesis of Magnetic Spinel Nanoparticles, in: Springer Proc. Phys., (2019); https://doi.org/10.1007/978-3-030-17755-3_25.
P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFe 2O4, NiFe2O4, ZnFe2O 4 powders prepared by the Aloe vera extract solution, Curr. Appl. Phys. 11, 101–108 (2011); https://doi.org/10.1016/j.cap.2010.06.027.
B.S. Surendra, M. Veerabhdraswamy, K.S. Anantharaju, H.P. Nagaswarupa, S.C. Prashantha, Green and chemical-engineered CuFe2O4: characterization, cyclic voltammetry, photocatalytic and photoluminescent investigation for multifunctional applications, J. Nanostructure Chem. 8, 45–59 (2018); https://doi.org/10.1007/s40097-018-0253-x.
K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, R.J. Ramalingam, H.A. Al-Lohedan, Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties, Mater. Chem. Phys. 204, 410–419 (2018); https://doi.org/10.1016/j.matchemphys.2017.10.077.
T. Tatarchuk, M. Liaskovska, V. Kotsyubynsky, M. Bououdina, Green synthesis of cobalt ferrite nanoparticles using Cydonia oblonga extract: structural and mössbauer studies, Mol. Cryst. Liq. Cryst. 672 (2018); https://doi.org/10.1080/15421406.2018.1542107.
M. Liaskovska, T. Tatarchuk, Green synthesis of zinc ferrite, Mol. Cryst. Liq. Cryst. 719, 45–52 (2021); https://doi.org/10.1080/15421406.2020.1862459.
J.W. Han, J. Kim, J. Kim, IJN-53538-ginkgo-biloba--a-natural-reducing-agent-for-the-synthesis-of_010714, 363–377 (2014).
T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V. V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites, J. Alloys Compd. 694, 777–791 (2017); https://doi.org/10.1016/j.jallcom.2016.10.067.
A. Omelyanchik, M. Salvador, F. D’orazio, V. Mameli, C. Cannas, D. Fiorani, A. Musinu, M. Rivas, V. Rodionova, G. Varvaro, D. Peddis, Magnetocrystalline and surface anisotropy in cofe2o4 nanoparticles, Nanomaterials. 10, 1–11 (2020); https://doi.org/10.3390/nano10071288.
L.H.G. De Biasi, R. S., & Cardoso, A simple model for the magnetocrystalline anisotropy in mixed ferrite nanoparticles, Phys. B Condens. Matter. 407 (2012); https://doi.org/https://www.sciencedirect.com/science/article/pii/S0921452612006369.
N. Ranvah, Y. Melikhov, D.C. Jiles, J.E. Snyder, A.J. Moses, P.I. Williams, S.H. Song, Temperature dependence of magnetic anisotropy of Ga-substituted cobalt ferrite, in: J. Appl. Phys. (2008); https://doi.org/10.1063/1.2832503.
and J.P.L. Mohapatra, Jeotikanta, Meiying Xing, Inductive thermal effect of ferrite magnetic nanoparticles, Materials (Basel) (2019).
A. Omelyanchik, K. Levada, S. Pshenichnikov, M. Abdolrahim, M. Baricic, A. Kapitunova, A. Galieva, S. Sukhikh, L. Astakhova, S. Antipov, B. Fabiano, D. Peddis, V. Rodionova, Green synthesis of co-zn spinel ferrite nanoparticles: Magnetic and intrinsic antimicrobial properties, Materials (Basel). 13, 1–13 (2020); https://doi.org/10.3390/ma13215014.
S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of optimised isotherm models for basic dye adsorption by kudzu, Bioresour. Technol. (2003); https://doi.org/10.1016/S0960-8524(02)00281-X.