Structural, morphological and photocatalytic properties of nanostructured TiO2/AgI photocatalyst

Authors

  • Ivan Mironyuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Nazarii Danyliuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Liliia Turovska Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
  • Ihor Mykytyn Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Volodymyr Kotsyubynsky Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.2.374-384

Keywords:

titania, Congo Red, Methyl Orange, photocatalyst

Abstract

Nanostructured TiO2/AgI photocatalyst under the action of ultraviolet or visible electromagnetic radiation effectively neutralizes organic pollutants in the aqueous environment. It is a nanostructure in which micro- and small mesopores of anatase TiO2 are filled with silver iodide in the superionic state. The content of the α-AgI ion-conducting phase in the volume of ТіО2 pores can be ~20 wt %.

To obtain a photocatalyst, titanium dioxide is synthesized by the sol-gel method, using a titanium aquacomplex solution [Ti(OH2)6]3+•3Cl- and a Na23 modifier additive as a precursor. The modifying additive during synthesis ensures the fixation of =О2СО carbonate groups on the surface of oxide material particles. The presence of these groups leads to an increase in both the pore volume and the specific surface area of ТіО2. The specific surface area of carbonized titanium dioxide is 368 m2•g-1, the pore volume is 0.28 cm3•g-1, and their size is 0.9-4.5 nm.

To fill the micro- and small mesopores of TiO2 with the superionic α-AgI phase, Ag+ cations are first adsorbed from the AgNO3 solution on the titanium dioxide surface, and then the oxide material is contacted with the KI solution.

Compared to the Evonik P25-TiO2 photocatalyst, the nanostructured TiO2/AgI photocatalyst demonstrates a significantly higher efficiency of photodegradation of organic dyes Congo Red and Methyl Orange in visible and ultraviolet radiation. The most active ТіО2/40AgI sample achieved complete degradation of the CR dye in 6 minutes of UV irradiation, while the efficiency of commercial Р25-TiO2 over the same time was only 42%.

References

M.K.I. Senevirathna, P.K.D.D.P. Pitigala, K. Tennakone, Water photoreduction with Cu2O quantum dots on TiO2 nano-particles, J. Photochem. Photobiol. A Chem. 171, 257 (2005); https://doi.org/10.1016/j.jphotochem.2004.10.018.

D.L. Liao, C.A. Badour, B.Q. Liao, Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange, J. Photochem. Photobiol. A Chem. 19, 11 (2008); https://doi.org/10.1016/j.jphotochem.2007.07.008.

L.C. Chen, F.R. Tsai, S.H. Fang, Y.C. Ho, Properties of sol-gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination, Electrochim. Acta. 54, 1304 (2009); https://doi.org/10.1016/j.electacta.2008.09.009.

E. V. Skorb, L.I. Antonouskaya, N.A. Belyasova, D.G. Shchukin, H. Möhwald, D. V. Sviridov, Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2: In2O3 nanocomposite, Appl. Catal. B Environ. 84, 94 (2008); https://doi.org/10.1016/j.apcatb.2008.03.007.

J.S. Jang, H.G. Kim, U.A. Joshi, J.W. Jang, J.S. Lee, Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation, Int. J. Hydrogen Energy. 33; 5975 (2008); https://doi.org/10.1016/j.ijhydene.2008.07.105.

W. Ho, J.C. Yu, Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles, J. Mol. Catal. A Chem. 247, 268 (2006); https://doi.org/10.1016/j.molcata.2005.11.057.

D. Jing, L. Guo, WS2 sensitized mesoporous TiO2 for efficient photocatalytic hydrogen production from water under visible light irradiation, Catal. Commun. 8, 795 (2007); https://doi.org/10.1016/j.catcom.2006.09.009.

G. Liao, S. Chen, X. Quan, Y. Zhang, H. Zhao, Remarkable improvement of visible light photocatalysis with PANI modified core-shell mesoporous TiO2 microspheres, Appl. Catal. B Environ. 102, 126 (2011); https://doi.org/10.1016/j.apcatb.2010.11.033.

H.C. Liang, X.Z. Li, Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films, Appl. Catal. B Environ. 86, 8 (2009); https://doi.org/10.1016/j.apcatb.2008.07.015.

D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue, Sunlight photocatalytic activity of polypyrrole-TiO2 nanocomposites prepared by “in situ” method, Catal. Commun. 9, 1162 (2008); https://doi.org/10.1016/j.catcom.2007.10.027.

J. Zhong, F. Chen, J. Zhang, Carbon-Deposited TiO2: Synthesis, Characterization, and Visible Photocatalytic Performance, J. Phys. Chem. 933 (2010); https://doi.org/10.1021/jp909835m.

R. Sellappan, J. Zhu, H. Fredriksson, R.S. Martins, M. Zäch, D. Chakarov, Preparation and characterization of TiO2 / carbon composite thin films with enhanced photocatalytic activity, J. Mol. Catal. A. Chem. 335, 136 (2011); https://doi.org/10.1016/j.molcata.2010.11.025.

S. Mu, Y. Long, S. Kang, J. Mu, Surface modification of TiO2 nanoparticles with a C 60 derivative and enhanced photocatalytic activity for the reduction of aqueous Cr (VI) ions, Catal. Commun. 11, 741 (2010); https://doi.org/10.1016/j.catcom.2010.02.006.

T. Graphene, T. Different, Y. Zhang, Z. Tang, X. Fu, Y. Xu, TiO2-Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials, ACS Nano. 4, 7303 (2010); https://doi.org/10.1021/nn1024219.

Y. Zang, R. Farnood, Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation, Appl. Catal. B. 79, 334 (2008); https://doi.org/10.1016/j.apcatb.2007.10.019.

J. Yu, G. Dai, B. Huang, Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays, J. Phys. Chem. C., 16394 (2009); https://doi.org/10.1021/jp905247j.

D. Fitzmaurice, H. Frei, Time-resolved optical study on the charge carrier dynamics in a TiO2/AgI sandwich colloid, J. Phys. Chem., 9176 (1995); https://doi.org/10.1021/j100022a034.

I. Mironyuk, T. Tatarchuk, M. Naushad, H. Vasylyeva, I. Mykytyn, Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2, J. Mol. Liq., 285, 742 (2019); https://doi.org/10.1016/J.MOLLIQ.2019.04.111.

V.M. Gun’ko, V.V. Turov, Nuclear magnetic resonance studies of interfacial phenomena, CRC Press. Boca Rat., (2013); https://doi.org/10.1201/b14202.

T. Tatarchuk, N. Danyliuk, A. Shyichuk, W. Macyk, M. Naushad, Photocatalytic degradation of dyes using rutile TiO2 synthesized by reverse micelle and low temperature methods: real-time monitoring of the degradation kinetics, J. Mol. Liq. 342, 117407 (2021); https://doi.org/10.1016/j.molliq.2021.117407.

N. Danyliuk, T. Tatarchuk, I. Mironyuk, V. Kotsyubynsky, V. Mandzyuk, Performance of commercial titanium dioxide samples in terms of dye photodegradation assessed using smartphone-based measurements, Phys. Chem. Solid State., 3, 582 (2022); https://doi.org/10.15330/pcss.23.3.582-589.

S. Yamasaki, T. Yamada, H. Kobayashi, H. Kitagawa, Preparation of Sub-10 nm AgI Nanoparticles and a Study on their Phase Transition Temperature, 73 (2013); https://doi.org/10.1002/asia.201200790.

K. Ullah, A. Ullah, A. Aldalbahi, J. Do Chung, W.C. Oh, Enhanced visible light photocatalytic activity and hydrogen evolution through novel heterostructure AgI-FG-TiO2 nanocomposites, J. Mol. Catal. A Chem. 410, 242 (2015); https://doi.org/10.1016/j.molcata.2015.09.024.

W. Liu, C. Wei, G. Wang, X. Cao, Y. Tan, S. Hu, In situ synthesis of plasmonic Ag@AgI/TiO2 nanocomposites with enhanced visible photocatalytic performance, Ceram. Int. 45, 17884 (2019); https://doi.org/10.1016/j.ceramint.2019.06.004.

A. Shoja, A. Habibi-yangjeh, M. Mousavi, S. Vadivel, Preparation of novel ternary TiO2QDs/CDs/AgI nanocomposites with superior visible-light induced photocatalytic activity, J. Photochem. Photobiol. A Chem. 385, 112070 (2019); https://doi.org/10.1016/j.jphotochem.2019.112070.

E. Liu, Y. Zhang, Y. Cong, Highly enhanced photocatalytic reduction of Cr (VI) on AgI/TiO2 under visible light irradiation: influence of heat pretreatment, Elsevier B.V. (2015); https://doi.org/10.1016/j.jhazmat.2015.12.050.

Q.W. Ying-Ying Shao, Wei-Dong Ye, Chun-Yan Sun, Chu-Lin Liu, Visible-light-induced degradation of polybrominated diphenyl ethers with AgI–TiO2, RSC Adv. 7, 39089 (2017); https://doi.org/10.1039/C7RA07106J.

I. Mironyuk, N. Danyliuk, L. Turovska, I. Mykytyn, Structural, morphological and photocatalytic properties of TiO2 obtained by thermolytic decomposition of the [Ti(OH2)6]3+•3Cl¯ aquacomplex, Phys. Chem. Solid State. 23, 741 (2022); https://doi.org/10.15330/pcss.23.4.741-755.

F. Fazlali, A. Hajian, A. Afkhami, H. Bagheri, A superficial approach for fabricating unique ternary AgI@TiO2/Zr-MOF composites: An excellent interfacial with improved photocatalytic light-responsive under visible light, J. Photochem. Photobiol. A Chem., 112717 (2020); https://doi.org/10.1016/j.jphotochem.2020.112717.

D. Yu, J. Bai, H. Liang, J. Wang, C. Li, Fabrication of a novel visible-light-driven photocatalyst Ag-AgI-TiO2 nanoparticles supported on carbon nanofibers, Appl. Surf. Sci. 349, 241 (2015); https://doi.org/10.1016/j.apsusc.2015.05.019.

D. Wu, M. Long, Enhancing visible-light activity of the self-cleaning TiO2-coated cotton fabrics by loading AgI particles, Surf. Coatings Technol. 206, 1175 (2011); https://doi.org/10.1016/j.surfcoat.2011.08.007.

D. Yu, J. Bai, H. Liang, T. Ma, C. Li, AgI-modified TiO2 supported by PAN nanofibers: A heterostructured composite with enhanced visible-light catalytic activity in degrading MO, Dye. Pigment. 133, 51 (2016); https://doi.org/10.1016/j.dyepig.2016.05.036.

Downloads

Published

2023-06-27

How to Cite

Mironyuk, I., Danyliuk, N., Turovska, L., Mykytyn, I., & Kotsyubynsky, V. (2023). Structural, morphological and photocatalytic properties of nanostructured TiO2/AgI photocatalyst. Physics and Chemistry of Solid State, 24(2), 374–384. https://doi.org/10.15330/pcss.24.2.374-384

Issue

Section

Scientific articles (Chemistry)

Most read articles by the same author(s)